Index | Australia | UK | Europe | USA | Canada | Africa | Russia | China | Asia | South America
  Gas Accidents | Environment | Economics | Health | Politics | Citizen Journalism | About Us | Links | Contact Us

Index > United States of America > Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing

Bookmark and Share

Halliburton Loophole

"Father of Fracking"
George Mitchell
concerns over environmental
impacts of fracking

History of Fracking
Only a new technology

USA Fracking Stories

A Texan tragedy

Gas injection may have triggered earthquakes in Texas

California Lags in Fracking Regulations

All In for California Water

Fracking in Michigan

Fracking in Michigan Potential Impact on Health, Environment, Economy

Hydraulic fracturing of Marcellus Shale

Methane Gas from Marcellus Shale Drilling

Marcellus Shale Gas Economics

Health impacts of Marcellus shale gas drilling

Pennsylvania Fracking

Fracking in Virginia

Lesson From Wyoming Fracking

Water Pollution from Fracking

Hydraulic Fracturing Poses Substantial Water Pollution Risks

Methane in drinking water wells

Abandoned gas wells leak

Natural Gas Leaks Discovered in Boston

Methane Leaks Under Streets of Boston

Methane leaks make fracking dirty

Fracking effects real estate values

Fracking stimulates earthquakes

Protecting Gas Pipelines From Earthquakes

Gas Pipeline Earthquake - Simulations

America's crumbling pipelines

Averting Pipeline Failures

Dangers to Underground Pipelines

Gas Pipelines Could Serve as Wireless Links

Government Action needed on a National Energy Policy

EPA Releases Update on Ongoing Hydraulic Fracturing Study

Solar Booster Shot for Natural Gas Power Plants

Natural Gas Pricing Reform to Facilitate Carbon Tax Policy

Investing in fracking

What Oil Prices Have in Store?

Methane Out, Carbon Dioxide In

Health impacts of Marcellus shale gas drilling

Professor Ingraffea

Anti-Fracking Billboard

Natural Gas Drilling

Threats to Biodiversity

Pronghorn Migration
hindered by gas development

Microbes in a Fracking Site

Protozoa May Hold Key to World Water Safety

Shale Gas Production

Research into the Fracking Controversy

Convert Methane Into Useful Chemicals

Methane Natural Gas Into Diesel

'Natural Gas' at the molecular level

Arctic Methane risks

Arctic Methane Seeps

Great Gas Hydrate Escape

Undersea Methane Seep Ecosystem

Methane in the Atmosphere of Early Earth

Methane Natural Gas Linked to Climate Change

Cutting Methane Pollutants Would Slow Sea Level Rise

California | Colorado | Dakota | Marcellus | Massachusetts | Michigan | New York |
Ohio | Pennsylvania | Texas | Utah | Virginia | Wyoming

Shale Gas


National Academy of Sciences of the United States of America

Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing

Abstract

Directional drilling and hydraulic-fracturing technologies are dramatically increasing natural-gas extraction.

In aquifers overlying the Marcellus and Utica shale formations of northeastern Pennsylvania and upstate New York, we document systematic evidence for methane contamination of drinking water associated with shale-gas extraction.

In active gas-extraction areas (one or more gas wells within 1 km), average and maximum methane concentrations in drinking-water wells increased with proximity to the nearest gas well and were 19.2 and 64 mg CH4 L-1 (n = 26), a potential explosion hazard; in contrast, dissolved methane samples in neighboring nonextraction sites (no gas wells within 1 km) within similar geologic formations and hydrogeologic regimes averaged only 1.1 mg L-1 (P < 0.05; n = 34).

Average δ13C-CH4 values of dissolved methane in shallow groundwater were significantly less negative for active than for nonactive sites (-37 ± 7‰ and -54 ± 11‰, respectively; P < 0.0001).

These δ13C-CH4 data, coupled with the ratios of methane-to-higher-chain hydrocarbons, and δ2H-CH4 values, are consistent with deeper thermogenic methane sources such as the Marcellus and Utica shales at the active sites and matched gas geochemistry from gas wells nearby.

In contrast, lower-concentration samples from shallow groundwater at nonactive sites had isotopic signatures reflecting a more biogenic or mixed biogenic/thermogenic methane source.

We found no evidence for contamination of drinking-water samples with deep saline brines or fracturing fluids.

We conclude that greater stewardship, data, and—possibly—regulation are needed to ensure the sustainable future of shale-gas extraction and to improve public confidence in its use.


Stephen G. Osborna,
Avner Vengoshb,
Nathaniel R. Warnerb, and
Robert B. Jacksona,b,c,1


Edited* by William H. Schlesinger, Cary Institute of Ecosystem Studies, Millbrook, NY, and approved April 14, 2011 (received for review January 13, 2011)


Proceedings of the National Academy of Sciences

California | Colorado | Dakota | Marcellus | Massachusetts | Michigan | New York |
Ohio | Pennsylvania | Texas | Utah | Virginia | Wyoming

 

 

 

site search by freefind