Index | Australia | UK | Europe | USA | Canada | Africa | Russia | China | Asia | South America
  Gas Accidents | Environment | Economics | Health | Politics | Citizen Journalism | About Us | Links | Contact Us

Index > United States of America > New Sensor Could Help Avert Pipeline Failures

Bookmark and Share

Halliburton Loophole

"Father of Fracking"
George Mitchell
concerns over environmental
impacts of fracking

History of Fracking
Only a new technology

USA Fracking Stories

A Texan tragedy

Gas injection may have triggered earthquakes in Texas

California Lags in Fracking Regulations

All In for California Water

Fracking in Michigan

Fracking in Michigan Potential Impact on Health, Environment, Economy

Hydraulic fracturing of Marcellus Shale

Methane Gas from Marcellus Shale Drilling

Marcellus Shale Gas Economics

Health impacts of Marcellus shale gas drilling

Pennsylvania Fracking

Fracking in Virginia

Lesson From Wyoming Fracking

Water Pollution from Fracking

Hydraulic Fracturing Poses Substantial Water Pollution Risks

Methane in drinking water wells

Abandoned gas wells leak

Natural Gas Leaks Discovered in Boston

Methane Leaks Under Streets of Boston

Methane leaks make fracking dirty

Fracking effects real estate values

Fracking stimulates earthquakes

Protecting Gas Pipelines From Earthquakes

Gas Pipeline Earthquake - Simulations

America's crumbling pipelines

Averting Pipeline Failures

Dangers to Underground Pipelines

Gas Pipelines Could Serve as Wireless Links

Government Action needed on a National Energy Policy

EPA Releases Update on Ongoing Hydraulic Fracturing Study

Solar Booster Shot for Natural Gas Power Plants

Natural Gas Pricing Reform to Facilitate Carbon Tax Policy

Investing in fracking

What Oil Prices Have in Store?

Methane Out, Carbon Dioxide In

Health impacts of Marcellus shale gas drilling

Professor Ingraffea

Anti-Fracking Billboard

Natural Gas Drilling

Threats to Biodiversity

Pronghorn Migration
hindered by gas development

Microbes in a Fracking Site

Protozoa May Hold Key to World Water Safety

Shale Gas Production

Research into the Fracking Controversy

Convert Methane Into Useful Chemicals

Methane Natural Gas Into Diesel

'Natural Gas' at the molecular level

Arctic Methane risks

Arctic Methane Seeps

Great Gas Hydrate Escape

Undersea Methane Seep Ecosystem

Methane in the Atmosphere of Early Earth

Methane Natural Gas Linked to Climate Change

Cutting Methane Pollutants Would Slow Sea Level Rise

California | Colorado | Dakota | Marcellus | Massachusetts | Michigan |
Ohio | Pennsylvania | Texas | Utah | Virginia | Wyoming

Shale Gas


New Sensor Could Help Avert Pipeline Failures

10/3/2008 - National Institute of Standards and Technology (NIST)

Researchers at the National Institute of Standards and Technology (NIST) and Colorado School of Mines (CSM) have developed a prototype sensor that quickly detects very small amounts of hydrogen accumulation in coated pipeline steel.

The new sensor could provide early warning of pipes that have accumulated excessive amounts of hydrogen—a notorious source of embrittlement—and avert potentially disastrous failures of pipelines carrying hydrogen fuel.

Hydrogen is attractive as a fuel because it burns cleanly without carbon emissions and can be derived from domestic sources.

However one long-recognized challenge is that hydrogen can cause gradual embrittlement in conventional pipelines by slowly diffusing into the metal.

The NIST/CSM sensor, described today at the 7th International Pipeline Conference,* could monitor for hydrogen buildup before a pipeline actually fails in service, or during testing or production.

The nondestructive, non-contact hydrogen sensor is approximately 4 square inches and is designed to be a portable sensor to make measurements on excavated or unexcavated pipeline steels.

The sensor sends a current through the pipe and measures changes in impedance (resistance with a function of depth) as an indicator of hydrogen content within the steel and the overall steel pipe integrity.

The hydrogen sensor is based on electromagnetic concepts to generate alternating currents into the pipeline steel, which in turn induces an opposing magnetic field.

Any change in the hydrogen content in the steel modifies the current, resistivity, and thus the impedance.

NIST laboratory and field test results show that a pipe's impedance, and thus resistivity, increases with increasing hydrogen content.

The measurement sensitivity is exceptional: the sensor can measure hydrogen content levels in pipeline steel well below 1 part per million (ppm).

High strength pipeline steels can tolerate only a few parts per million of hydrogen before significant problems arise.

By contrast, conventional analytical techniques do not have sensitivity or accuracy below 1 ppm.

The new hydrogen sensor also acts as a forewarning or preventative monitoring system to detect the agents that actually cause the flaws, cracks and defects before they arise.

Most traditional nondestructive tools used in the pipeline industry (such as ultrasonics and magnetic flux leakage) are used for determination of cracks, corrosion or other flaws that have already occurred.

The sensor development was supported in part by the Minerals Management Service and Department of Transportation.

* A. Lasseigne, K. Koenig, J. Jackson, D. Olson, B. Mishra, T.A. Siewert and J.D. McColskey.

Advanced non-destructive hydrogen sensors to prevent material degradation from hydrogen damage. Paper presented Oct. 1 at IPC2008, 7th International Pipeline Conference, Sept. 29 " Oct. 3, 2008, Calgary, Alberta, Canada.


 

________________________________

 

 

 

site search by freefind